Inverse problems in anisotropic elasticity and waves techniques from microlocal analysis, algebraic geometry, Finsler geometry

M.V. de Hoop

J. Ilmavirta, M. Lassas, T. Saksala, G. Uhlmann, A. Várilly-Alvarado and A. Vasy

Rice University

Simons Foundation MATH + XNSF-DMS, DOE BES, Geo-Mathematical Imaging Group, Google Research

M.V. de Hoop (Rice University)

ISAAC 2021

background

anisotropy, exploration and global seismology

Anderson & Dziewonski (1982), Crampin (1984), Nataf, Nakanish & Anderson (1986), Helbig (1994)

background

anisotropy, exploration and global seismology

Anderson & Dziewonski (1982), Crampin (1984), Nataf, Nakanish & Anderson (1986), Helbig (1994)

tomography

Hanyga (1982), Jech (1988), Pratt & Chapman (1992), Chapman & Miller (1996)

ΤTI

Vestrum, Lawton & Schmid (1999), Zhou & Greenhalgh (2008), Bakulin, Woodward, Nichols, Osypov & Zdraveva (2010), Tsvankin & Wang (2013), Tavakoli, Operto, Ribodetti, Virieux & Sambolian (2018)

medical elasticity imaging (elastography), see for example,

Shore, Barbone, Oberai & Morgan (2011)

background

anisotropy, exploration and global seismology

Anderson & Dziewonski (1982), Crampin (1984), Nataf, Nakanish & Anderson (1986), Helbig (1994)

tomography

Hanyga (1982), Jech (1988), Pratt & Chapman (1992), Chapman & Miller (1996)

ΤTI

Vestrum, Lawton & Schmid (1999), Zhou & Greenhalgh (2008), Bakulin, Woodward, Nichols, Osypov & Zdraveva (2010), Tsvankin & Wang (2013), Tavakoli, Operto, Ribodetti, Virieux & Sambolian (2018)

medical elasticity imaging (elastography), see for example,

Shore, Barbone, Oberai & Morgan (2011)

Finsler geometry

Antonelli, Ingarden & Matsumoto (1993), Červený (2001), Yajima & Nagahama (2009), Clayton (2015)

M.V. de Hoop (Rice University)

smooth stiffness tensor $c_{ijk\ell} = c_{ijk\ell}(x)$; symmetries

$$c_{ijk\ell}(x)=c_{jik\ell}(x)=c_{k\ell ij}(x)$$

smooth density $\rho = \rho(x)$, normalized elastic moduli

$$a_{ijk\ell} = rac{c_{ijk\ell}}{
ho}$$

elastic wave operator

$$P_{i\ell} = \delta_{i\ell} \frac{\partial^2}{\partial t^2} - \sum_{j,k} \frac{\partial}{\partial x^j} a_{ijk\ell}(x) \frac{\partial}{\partial x^k} + \text{lower order terms}$$

smooth stiffness tensor $c_{ijk\ell} = c_{ijk\ell}(x)$; symmetries

$$c_{ijk\ell}(x)=c_{jik\ell}(x)=c_{k\ell ij}(x)$$

smooth density $\rho = \rho(x)$, normalized elastic moduli

$$a_{ijk\ell} = rac{c_{ijk\ell}}{
ho}$$

elastic wave operator

$$P_{i\ell} = \delta_{i\ell} \frac{\partial^2}{\partial t^2} - \sum_{j,k} \frac{\partial}{\partial x^j} a_{ijk\ell}(x) \frac{\partial}{\partial x^k} + \text{lower order terms}$$

principal symbol, Christoffel matrix

$$\Gamma_{i\ell}(x,p) := \sum_{j,k} a_{ijk\ell}(x) p_j p_k$$
 we also write ξ for p

symmetric, positive definite for every $(x, p) \in \mathbb{R}^3 \times (\mathbb{R}^3 \setminus \{0\})$

M.V. de Hoop (Rice University)

matrix representation reflecting major symmetries

Voigt notation

elastic waves, bicharacteristics

three positive eigenvalues $G^m(x,p), m \in \{1,2,3\}$ eigenvectors $\Gamma q^m = G^m q^m$ $G^1(x,p) > G^m(x,p), m \in \{2,3\}$

level set of G^1 for x fixed is convex

level sets of G^2 and G^3 must have points in common: D_c (degenerate)

slowness surface

$$G = \sum_{i,\ell} \Gamma_{i\ell} q_i q_\ell = \sum_{i,j,k,\ell} a_{ijk\ell} q_i q_\ell p_j p_k$$

avoid points at which $D_p G$ vanishes

elastic waves, bicharacteristics

three positive eigenvalues $G^m(x,p), m \in \{1,2,3\}$ eigenvectors $\Gamma q^m = G^m q^m$ $G^1(x,p) > G^m(x,p), m \in \{2,3\}$

level set of G^1 for x fixed is convex

level sets of G^2 and G^3 must have points in common: D_c (degenerate) slowness surface

$$G = \sum_{i,\ell} \Gamma_{i\ell} q_i q_\ell = \sum_{i,j,k,\ell} a_{ijk\ell} q_i q_\ell p_j p_k$$

avoid points at which $D_p G$ vanishes Hamiltonians: $H(x,\xi) = G^m(x,\xi)$ smooth outside D_c

elastic waves, bicharacteristics

three positive eigenvalues $G^m(x,p), m \in \{1,2,3\}$ eigenvectors $\Gamma q^m = G^m q^m$ $G^1(x,p) > G^m(x,p), m \in \{2,3\}$

level set of G^1 for x fixed is convex

level sets of G^2 and G^3 must have points in common: D_c (degenerate) slowness surface

$$G = \sum_{i,\ell} \Gamma_{i\ell} q_i q_\ell = \sum_{i,j,k,\ell} a_{ijk\ell} q_i q_\ell p_j p_k$$

avoid points at which $D_{\rho}G$ vanishes Hamiltonians: $H(x,\xi) = G^{m}(x,\xi)$ smooth outside D_{c}

continuous function $f(x,p) := \sqrt{G^1(x,p)}$ au dual to t

- $f: \mathbb{R}^3 imes (\mathbb{R}^3 \setminus \{0\}) o (0,\infty)$ is smooth, real analytic on the fibers
- for every $(x,p)\in \mathbb{R}^3 imes \mathbb{R}^3$ and $s\in \mathbb{R}$ it holds that f(x,sp)=|s|f(x,p)
- for every $(x, p) \in \mathbb{R}^3 \times (\mathbb{R}^3 \setminus \{0\})$ the Hessian of $\frac{1}{2}f^2$ is symmetric and positive definite with respect to p

parameters vs surfaces (sheets), $p = \tau^{-1} \xi$

(tilted) transverse isotropy

qP, qSV, qSH

parameters vs surfaces (sheets), $p = \tau^{-1} \xi$

(tilted) transverse isotropy no symmetry qP, qSV, qSH

parameters vs surfaces (sheets), $p = au^{-1} \xi$

(tilted) transverse isotropy no symmetry qP, qSV, qSH

propagation of singularities governed by Hamiltonians $H(x, \xi)$, bicharacteristics

M.V. de Hoop (Rice University)

inverse problems in anisotropic elasticity

geodesic ray transform, (tensor) tomography

Herglotz (1905), Wiechert & Zoeppritz (1907), Mukhometov (1975, 1982, 1987), Pestov & Sharafutdinov (1988), Anikonov & Romanov (1997), Paternain, Salo & Uhlmann (2013) surfaces, *Uhlmann & Vasy (2016)*

boundary rigidity

Michel (1981), Muhometov & Romanov (1978), Besson, Courtois & Gallot (1995), Stefanov & Uhlmann (1998), Lassas, Sharafutdinov & Uhlmann (2003), Pestov & Uhlmann (2005), Stefanov, Uhlmann & Vasy (2017)

boundary distance data

Kurylev (1997), Katsuda, Kurylev & Lassas (2007), Ivanov (2010)

broken scattering relation data

Kurylev, Lassas & Uhlmann (2010)

(compact) Riemannian manifolds

M.V. de Hoop (Rice University)

elastic anisotropy through the lens of algebraic geometry recovery of stiffness tensor from one slowness sheet

slowness surface

$$S_x = \{ p \in T_x^* \mathbb{R}^3 : \det(\Gamma(x, p) - I) = 0 \}$$

is algebraic

slowness surface

$$S_x = \{ p \in T_x^* \mathbb{R}^3 : \det(\Gamma(x, p) - I) = 0 \}$$

is algebraic

Question

given a number of points on a slowness surface, can we

- **1** reconstruct the entire slowness surface?
- In the stiffness tensor that gave rise to it?

Theorem (dH, Ilmavirta, Lassas & Várilly-Alvarado)

For most choices of triclinic (that is, totally anisotropic materials) the slowness surface at any point is irreducible.

Theorem (dH, Ilmavirta, Lassas & Várilly-Alvarado)

For most choices of triclinic (that is, totally anisotropic materials) the slowness surface at any point is irreducible.

consequence: for most anisotropic materials, slownes surfaces can be reconstructed from a small number of data points

Theorem (dH, Ilmavirta, Lassas & Várilly-Alvarado)

For most choices of triclinic (that is, totally anisotropic materials) the slowness surface at any point is irreducible.

consequence: for most anisotropic materials, slownes surfaces can be reconstructed from a small number of data points

bonus: for most anisotropic materials, the stiffness tensor can be recovered uniquely (algorithmically!) from a slowness surface

$$\mathbf{S} := \{(p, a): \det(\Gamma(p, a) - I) = 0\} \leftarrow \begin{array}{l} \text{all orthorhombic slowness surfaces at once} \\ \cap \\ \mathbb{C}^{3}_{(p_{1}, p_{2}, p_{3})} \times \mathbb{C}^{9}_{(a_{11}, a_{12}, a_{13}, a_{22}, a_{23}, a_{33}, a_{44}, a_{55}, a_{66})} \\ pr_{2} \downarrow \\ \mathbb{C}^{9} \leftarrow \begin{array}{l} \text{given a point } a \in \mathbb{C}^{9}, \text{ the preimage } pr_{2}^{-1}(a) \text{ is the slowness}} \\ \text{surface associated to the stiffness tensor that } a \text{ represents} \end{array}$$

after compactifying the set-up, we show that the subset of $pr_2(S)$ with irreducible preimages is (Zariski) open in \mathbb{C}^9

- the subset of $pr_2(\mathbf{S})$ with irreducible preimages is (Zariski) open in \mathbb{C}^9
- a single irreducible slowness surface would witness non-emptiness
- we use reduction modulo a prime number + Galois theory, and properties of finite fields

- the subset of $pr_2(\mathbf{S})$ with irreducible preimages is (Zariski) open in \mathbb{C}^9
- a single irreducible slowness surface would witness non-emptiness
- ${\ensuremath{\, \bullet }}$ we use reduction modulo a prime number + Galois theory, and properties of finite fields

$$\begin{split} 5000424p_1^6 + 14708322p_1^4p_2^2 + 18410832p_1^4p_3^2 - 105178p_1^4 + 14702184p_1^2p_2^4 \\ &\quad + 38400324p_1^2p_2^2p_3^2 - 209855p_1^2p_2^2 + 15221384p_1^2p_3^4 - 227260p_1^2p_3^2 \\ &\quad + 647p_1^2 + 4975872p_2^6 + 20903748p_2^4p_3^2 - 107584p_2^4 + 17362658p_2^2p_3^4 \\ &\quad - 249931p_2^2p_3^2 + 668p_2^2 + 3317072p_3^6 - 81254p_3^4 + 583p_3^2 - 1 = 0 \end{split}$$

is irreducible over $\mathbb{F}_{5^6}\implies$ is irredicible over \mathbb{C}

particular mineral

Theorem (Grothendieck, EGA IV.3, 1966)

Let $f: X \to Y$ be a proper morphism, flat and of finite presentation. Then the set of $y \in Y$ such that the fiber X_y is geometrically integral is open.

under the hood: algebraic geometry - reconstruction

all orthorhombic stiffness tensors at once ("moduli space")

$$\begin{array}{l} \downarrow \\ \mathbf{A} \subset \mathbb{C}^{9}_{(a_{11},a_{12},a_{13},a_{22},a_{23},a_{33},a_{44},a_{55},a_{66})} \\ \downarrow \chi \\ \mathbb{C}^{20}_{c_{0},\ldots,c_{20}} \qquad \chi(a) = \text{vector of coefficients of corresponding slowness surfaces} \end{array}$$

• show: image of ϕ is 9-dimensional and generically 1-1

• reconstruction of pre-image: Gröbner bases

boundary rigidity, bicharacteristic curves point of view recovery of TTI parameters

- invariant setting based on Riemannian geometry
- a given background metric g_0 , which is typically the Euclidean metric; dual metric G_0

- invariant setting based on Riemannian geometry
- a given background metric g_0 , which is typically the Euclidean metric; dual metric G_0
- parameterization of transversely isotropic materials:
 - material constants $a_{11}, a_{13}, a_{33}, a_{55}$ and a_{66}
 - ullet axis of isotropy, which can be encoded by a vector field, or a one form ω
- use orthogonal coordinates relative to the metric g_0 , aligning the axis of isotropy with the third coordinate axis

qSH

(squared) Riemannian dual metric (defining the slowness surface)

$$G = G_{qSH} = a_{66}(x)|\xi'|^2 + a_{55}(x)\xi_3^2 = a_{66}(x)G_0 + (a_{55}(x) - a_{66}(x))\xi_3^2$$

corresponds to a Riemannian metric

$$g = g_{qSH} = a_{66}(x)^{-1} |dx'|^2 + a_{55}(x)^{-1} dx_3^2 = a_{66}(x)^{-1} g_0 + (a_{55}(x)^{-1} - a_{66}(x)^{-1}) dx_3^2$$

invariantly

$$g = \alpha g_0 + (\beta - \alpha)\omega \otimes \omega$$

metric is a rank one perturbation of a conformal multiple of the background (say, Euclidean) metric, with $\alpha = a_{66}^{-1}$, $\beta = a_{55}^{-1}$ functions on the base manifold

- g determines the span of ω if $\beta \neq \alpha$
- kernel of ω is well-defined (at any point in the manifold) as the 2-dimensional subspace of the tangent space restricted to which g is a constant multiple of g_0

- integrability its kernel is an integrable hyperplane distribution, which means that Ker ω is the tangent space of a smooth family of submanifolds
- locally level sets of a function f, ω is a smooth multiple of df

$$\mathbf{g} = lpha \mathbf{g}_{\mathbf{0}} + \gamma \, \mathbf{d} \mathbf{f} \otimes \, \mathbf{d} \mathbf{f}$$

• this corresponds to some "stratification" given by the level sets of f

convex foliation

- (M,g) is an *n*-dimensional Riemannian manifold with boundary, $n \ge 3$, and assume that ∂M is strictly convex (in the second fundamental form sense) with respect to the g at some $p \in \partial M$
- x is a smooth function with non-vanishing differential whose level sets are strictly concave from the superlevel sets, and $\{x \ge 0\} \cap M \subset \partial M$

(Hamiltonian flow $(X(t), \Xi(t))$: $\frac{d}{dt}(x \circ X)(t) = 0$ implies $\frac{d^2}{dt^2}(x \circ X)(t) > 0$)

Theorem

consider the class of elastic problems in which $\operatorname{Ker} \omega = \operatorname{Ker} df$ is an integrable hyperplane distribution on a manifold with boundary M, with ω not conormal to ∂M and not orthogonal to $N^*\partial M$ relative to G_0

then, under the local, resp. global, convexity conditions for Riemannian determination (up to diffeomorphisms), f, α, β are locally, resp. globally, determined by the qSH travel times, resp. qSH lens relations, and the labelling of the level sets of f at the boundary

there is *no* diffeomorphism freedom in this problem, unlike for the boundary rigidity problem in Riemannian geometry!

remaining material parameters, a_{11} , a_{13} and a_{33}

at a point with coordinates g_0 -orthogonal and such that the isotropy axis is aligned with the \tilde{x}_3 axis the Hamiltonians for the other waves take the form

$$\begin{aligned} G_{qP/qSV} &= (a_{11} + a_{55}) |\widetilde{\xi}'|^2 + (a_{33} + a_{55}) \widetilde{\xi}_3^2 \\ &\pm \sqrt{\left((a_{11} - a_{55})|\widetilde{\xi}'|^2 + (a_{33} - a_{55}) \widetilde{\xi}_3^2\right)^2 - 4E^2 |\widetilde{\xi}'|^2 \widetilde{\xi}_3^2} \end{aligned}$$

where

$$E^2 = (a_{11} - a_{55})(a_{33} - a_{55}) - (a_{13} + a_{55})^2$$

assumption

$$\max\{a_{55}, a_{66}\} < \min\{a_{11}, a_{33}\}$$

microlocally weighted ray transform along "curves" (projected Hamiltonian flow)

determination of a_{11} , a_{33} and E^2 ?

M.V. de Hoop (Rice University)

triplications, ..

multiple points in the cotangent space potentially corresponding to the same tangent vector via the Hamilton map

Lemma

suppose that either $H = H_+ = G_{qP}$, or instead $H = H_- = G_{qSV}$ and

$$a_{33}(a_{11}-a_{55})>(a_{13}+a_{55})^2$$

then the map $\tilde{\xi} \to \mathfrak{H}_{\tilde{\chi}}(\tilde{\xi}) = \sum_{j} \frac{\partial H}{\partial \tilde{\xi}_{j}} \partial_{\tilde{\chi}_{j}}$ has an invertible differential at $\tilde{\xi}_{3} = 0$, and indeed the level sets of H are strictly convex (from the sublevel sets) nearby

Remark

if $E^2 \ge 0$, the right-hand side is $\le (a_{11} - a_{55})(a_{33} - a_{55})$, so the inequality in the statement of the lemma is automatically true

if the transverse isotropy orthogonal planes are close to the tangent spaces to a convex foliation, then the material is non-degenerate relative to the convex foliation

Definition

a transversely isotropic material is non-degenerate relative to a convex foliation (concave from the superlevel sets for G_{qSV}) if for each point x and each vector v tangent to the convex foliation at the point x there is a covector ξ in the cotangent space over x such that $\mathfrak{H}_{x}(\xi) = v$ and the map \mathfrak{H}_{x} has invertible differential at ξ , with \mathfrak{H}_{x} arising from G_{qSV}

a transversely isotropic material is non-degenerate provided the statement above holds for all v (and not just v tangent to a particular convex foliation)

Lemma

if the gradient ∇f of the transverse isotropy foliation function is not parallel to the artificial boundary, points with $\tilde{\xi}' = 0$ cannot give rise to vectors tangent to the artificial boundary under Hamiltonian map \mathfrak{H}_{x}

Theorem

assume that ∇f is neither parallel, nor orthogonal to the artificial boundary with respect to g_0 ; assume moreover that the transversely isotropic material is non-degenerate relative to a convex foliation if qSV data are used below, with convexity of the foliation always understood with respect to G_{qP} , resp. G_{qSV} , if qP, resp. qSV data are used below

then the modified and localized "normal operators" arising from the Stefanov-Uhlmann formula (pseudolinearization) are in Melrose's scattering pseudodifferential operator algebra

furthermore, the boundary principal symbol is elliptic at finite points of the scattering cotangent bundle for any one of E^2 , a_{11} , a_{33} from the qP travel data, and for E^2 (as well as a_{11} and a_{33} if $E^2 > 0$) from the qSV travel data; furthermore, for a_{11} from the qP-travel time data standard principal symbol ellipticity also holds

Theorem

for a_{33} , E^2 from the qP or qSV travel data, as well as for E^2 and one of a_{11} and a_{33} jointly from the qP and qSV data, the standard principal symbol is not elliptic, rather vanishes in a non-degenerate quadratic manner along the span of df at fiber infinity in the scattering cotangent bundle

- in general, for the normal operator's standard principal symbol computation at a point ζ ∈ T^{*}_xM, one takes a weighted average of certain quantities evaluated at covectors for which the Hamilton vector field for the relevant polarization is annihilated by ζ
- if ζ = df is in the axis direction, the tangent vectors involved in the integration correspond to covectors in the g₀-orthogonal plane, that is, with vanishing ξ₃ coordinate, and there the qP and qSV wave speeds are insensitive to a₃₃, E² as these appear with a prefactor ξ₃²

Finsler geometry point of view recovery of "slowness surfaces"

$$f = \sqrt{G^1}$$
 is a convex norm on the cotangent space

a Finsler manifold is a differentiable manifold M equipped with $F_x: T_x M \to [0, \infty)$ for each x with the properties of a norm; combining the functions on separate fibers gives rise to the Finsler function $F: TM \to [0, \infty)$, which is continuous on TM and smooth enough on $TM \setminus 0$

• F^* is related to F as (Legendre transform)

$$F_{x}(v(x,p)) = F_{x}^{*}(p)$$
 with $v(x,p) = \frac{\partial F_{x}^{*}}{\partial p}(p)$

$$f = \sqrt{G^1}$$
 is a convex norm on the cotangent space

a Finsler manifold is a differentiable manifold M equipped with $F_x: T_x M \to [0, \infty)$ for each x with the properties of a norm; combining the functions on separate fibers gives rise to the Finsler function $F: TM \to [0, \infty)$, which is continuous on TM and smooth enough on $TM \setminus 0$

• F^* is related to F as (Legendre transform)

$$F_{x}(v(x,p)) = F_{x}^{*}(p)$$
 with $v(x,p) = \frac{\partial F_{x}^{*}}{\partial p}(p)$

elastic waves, bicharacteristics, geodesics

• for any $x \in M$, $v \in T_x M \setminus 0$, in local coordinates

$$\left(\frac{1}{2}\frac{\partial}{\partial v^{i}}\frac{\partial}{\partial v^{j}}F^{2}(x,v)\right)_{i,j=1}^{n}=:\left(g_{ij}(x,v)\right)_{i,j=1}^{n}$$

the local Riemannian metric

 the length of any curve is defined using Riemannian metric associated with its tangent direction; the infinitesimal travel time dt is determined by the local Riemannian metric g_{ij}

$$\mathrm{d}t^2 = F^2(x,\dot{x}) = g_{ij}(x,\dot{x})\dot{x}^j\dot{x}^i$$

let I be a closed interval; $\gamma: I \to M$, with a constant speed $F(\dot{\gamma}(t)) \equiv c \geq 0$, is a geodesic of Finsler manifold (M, F) if $\gamma(t)$ solves the system of geodesic equations

$$\ddot{\gamma}^{i}(t) + 2\mathcal{G}^{i}(\dot{\gamma}(t)) = 0, \quad \mathcal{G}^{i}(x,v) = \frac{1}{4} \sum_{j,k,l} g^{il}(x,v) \left\{ 2 \frac{\partial g_{jl}(x,v)}{\partial x^{k}} - \frac{\partial g_{jk}(x,v)}{\partial x^{l}} \right\} v^{j} v^{k}$$

 $\mathcal{G}^i \colon TM \to \mathbb{R}$

M.V. de Hoop (Rice University)

let $x, y \in M$ and let $C_{x,y}$ denote the collection of all piecewise C^1 paths from x to y

$$d_F(x,y) := \inf \left\{ \mathcal{L}(c) := \int_0^1 F(c(t),\dot{c}(t)) \ dt \ : \ c \in C_{x,y}
ight\}$$

we call a map $\Psi: (M_1, F_1) \to (M_2, F_2)$ a Finslerian isomorphism, if it is a diffeomorphism that satisfies

$$F_1(v)=F_2(\Psi_*v), \quad v\in TM_1$$

where Ψ_* is the push forward of Ψ

Finslerian boundary distance function

(M, F) is smooth compact *n*-dimensional, $n \ge 2$, Finsler manifold with boundary and $x \in M^{int}$

direction is from x to z

inverse problem of Finslerian boundary distance functions

let (M_i, F_i) , i = 1, 2 be compact smooth *n*-dimensional $(n \ge 2)$ Finsler manifolds with boundary

boundary distance data of (M_1, F_1) and (M_2, F_2) agree if $\exists \phi : \partial M_1 \to \partial M_2$, diffeomorphism such that

$$\left\{ d_{F_1}(x,\cdot) \colon \partial M_1
ightarrow [0,\infty) \mid x \in M_1^{int}
ight\} = \left\{ d_{F_2}(y,\phi(\cdot)) \colon \partial M_1
ightarrow [0,\infty) \mid y \in M_2^{int}
ight\}$$

inverse problem: are (M_1, F_1) and (M_2, F_2) Finsler isometric if their boundary distance data agree? *not quite*

obstruction for the uniqueness

define set $\mathfrak{G}(M, F)$ so that for $(x, v) \in \mathfrak{G}(M, F) \subset TM$ the geodesic $\gamma_{x,v}$ is a distance minimizer until it exits M at $z \in \partial M$

- we can reconstruct F(x, v) since (x, v) ∈ 𝔅(M, F) is related to d_F(x, z)
- we cannot reconstruct F(x, v') since geodesic $\gamma_{x,v'}$ is trapped
- we can "modify" F in neighborhood of (x, v')without changing $d_F(x, \cdot)|_{\partial M}$

Theorem (dH, Ilmavirta, Lassas, Saksala)

let (M_i, F_i) , i = 1, 2 be smooth, connected, compact Finsler manifolds with smooth boundary; if the boundary distance data of (M_1, F_1) and (M_2, F_2) agree, then there is a diffeomorphism $\Psi: M_1 \rightarrow M_2$ such that Ψ on ∂M_1 coincides with ϕ

the sets $\overline{\mathfrak{G}(M_1,F_1)}$ and $\overline{\mathfrak{G}(M_1,\Psi^*F_2)}$ coincide and in this set $F_1 = \Psi^*F_2$

for any $(x, v) \in TM_1^{int} \setminus \overline{\mathfrak{G}(M_1, F_1)}$ there exists a smooth Finsler function $F_3 : TM_1 \to [0, \infty)$ so that $d_{F_1}(p, z) = d_{F_3}(p, z)$ for all $p \in M_1$ and $z \in \partial M_1$ but $F_1(x, v) \neq F_3(x, v)$

Theorem (dH, Ilmavirta, Lassas, Saksala)

let (M_i, F_i) , i = 1, 2 be smooth, connected, compact Finsler manifolds with smooth boundary; if the boundary distance data of (M_1, F_1) and (M_2, F_2) agree, then there is a diffeomorphism $\Psi: M_1 \rightarrow M_2$ such that Ψ on ∂M_1 coincides with ϕ

the sets $\overline{\mathfrak{G}(M_1,F_1)}$ and $\overline{\mathfrak{G}(M_1,\Psi^*F_2)}$ coincide and in this set $F_1 = \Psi^*F_2$

for any $(x, v) \in TM_1^{int} \setminus \overline{\mathfrak{G}(M_1, F_1)}$ there exists a smooth Finsler function $F_3 : TM_1 \to [0, \infty)$ so that $d_{F_1}(p, z) = d_{F_3}(p, z)$ for all $p \in M_1$ and $z \in \partial M_1$ but $F_1(x, v) \neq F_3(x, v)$

anisotropic elasticity

Theorem (dH, Ilmavirta, Lassas, Saksala)

let (M_i, F_i) , i = 1, 2 be smooth, connected, compact Finsler manifolds with smooth boundary; if the boundary distance data of (M_1, F_1) and (M_2, F_2) agree, and if Finsler function F_i is fiberwise real analytic, then there exists a Finslerian isometry $\Psi: (M_1, F_1) \rightarrow (M_2, F_2)$ such that Ψ on ∂M_1 coincides with ϕ proof of optimality consists of three steps

- reconstruction of topology
- reconstruction of smooth structure
- reconstruction of Finsler structure

broken scattering relation

recovery of "slowness surfaces"

Definition

A Finsler manifold with boundary is said to have a strictly convex foliation if there is a smooth function $f: M \to \mathbb{R}$ so that

- $f^{-1}{0} = \partial M$, $f^{-1}(0, S] = int(M)$, $f^{-1}(S)$ has empty interior

broken scattering relation

- let $\varphi_t \colon SM \to SM$ be the geodesic flow
- the natural projection of the tangent bundle will be denoted by $\pi \colon TM \to M$
- the boundary of the sphere bundle is

$$\partial SM = \{ v \in SM; \pi(v) \in \partial M \}$$

• identify the inward-pointing part of this boundary

$$\partial_{\mathrm{in}}SM = \{ v \in \partial SM; \langle v, v \rangle_{\nu} > 0 \}$$

where ν is the inward pointing normal vector field and $\langle v, \nu \rangle_{\nu} = g_{ij}(\nu) \nu^{i} v^{j}$

• identify the outward-pointing part

$$\partial_{\mathrm{out}}SM = \{ v \in \partial SM; \langle v, \nu \rangle_{\nu} < 0 \}$$

M.V. de Hoop (Rice University)

Definition

Let (M, F) be a Finsler manifold with boundary. For each t > 0 we define a relation R_t on $\partial_{in}SM$ so that vR_tw if and only if there exist two numbers $t_1, t_2 > 0$ for which $t_1 + t_2 = t$ and $\pi(\varphi_{t_1}(v)) = \pi(\varphi_{t_2}(w))$. We call this relation the broken scattering relation.

the broken scattering relation, that is, the lengths of the broken geodesics, determine uniquely the isometry type of a Finsler manifold

Definition

Let M_1 and M_2 be two smooth manifolds with boundary. We say that a diffeomorphism $\Xi: \partial TM_1 \rightarrow \partial TM_2$ is compatible with a diffeomorphism $\phi: \partial M_1 \rightarrow \partial M_2$ if Ξ is a linear isomorphism on every fiber and satisfies $\Xi(T\partial M_1) = T\partial M_2$ and $\Xi|_{T\partial M_1} = \mathrm{d}\phi$.

Theorem (dH, Ilmavirta, Lassas & Saksala)

Let (M_i, F_i) , $i \in \{1, 2\}$ be two compact Finsler manifolds of dimension larger or equal to 3, with boundary. We assume the following:

- (i) Both Finsler functions F_1 and F_2 are reversible.
- (ii) The manifolds (M_i, F_i) , $i \in \{1, 2\}$ have strictly convex foliations in the sense of definition 11.

(iii) There are diffeomorphisms $\phi: \partial M_1 \to \partial M_2$ and $\Xi: \partial TM_1 \to \partial TM_2$ that are compatible.

- (iv) $F_1 = F_2 \circ \Xi$ on ∂TM_1 .
- (v) For any two vectors $v, w \in \partial_{in}SM_1$ and t > 0 we have $vR_t^{(1)}w$ if and only if $\equiv (v)R_t^{(2)}\equiv(w)$, where $R_t^{(i)}$ is the broken scattering relation on (M_i, F_i) .

Then there is a diffeomorphism $\Psi \colon M_1 \to M_2$ that is an isometry in the sense of $F_1 = F_2 \circ d\Psi$, which satisfies $\Psi|_{\partial M_1} = \phi$, and $d\Psi|_{\partial TM_1} = \Xi$.

in the elastic setting no foliation condition is needed; it can be replaced with fiberwise analyticity

- elasticity as interplay of microlocal analysis, algebraic geometry and Finsler geometry
- anisotropic elasticity (polarizations) more rigidity than in the Riemannian case
- boundary rigidity beyond TTI (in dimension 3) is still open
- finite set of *almost simultaneous* point sources: approximate recovery of a manifold for the simple Riemannian case generalization?